Changes

Jump to navigation Jump to search
636 bytes removed ,  16:00, 2 November 2024
no edit summary
Line 7: Line 7:  
A near-eye lightfield display may be paired with a computer system that automatically updates the rendering viewpoint according to positional and orientational sensor data, such as a [[virtual reality]] system or [[augmented reality]].
 
A near-eye lightfield display may be paired with a computer system that automatically updates the rendering viewpoint according to positional and orientational sensor data, such as a [[virtual reality]] system or [[augmented reality]].
   −
Two human eyes perceive the world slightly differently. In the same way, light rays that enter the pupil at different location will encode a slightly different picture of the world being observed <ref name=”3”>Stanford University. Near-Eye Light Field Displays. Retrieved from https://talks.stanford.edu/douglas-lanman-near-eye-light-field-displays/</ref><ref name=”4”> Fattal, D. (2016). The ultimate guide to 3D technologies. Retrieved from https://thenextweb.com/insider/2016/04/23/guide-to-3d-tech/#</ref>. A light field is composed of all the light rays at every point in space travelling in every direction. It is a 4D data, since every point in three-dimensional space is attributed a direction. This concept came about in the 1990s as a solution to problems in computer graphics and vision <ref name=”5”> LightField Forum. Refocus your Eyes: Nvidia presents Near-Eye Light Field Display Prototype. Retrieved from http://lightfield-forum.com/2013/07/refocus-your-eyes-nvidia-presents-near-eye-light-field-display-prototype/</ref>.
+
Sharp images from out-of-focus display elements are depicted by synthesizing these light fields that correspond to virtual scenes located within the viewer’s natural accommodation range. Lanman and Luebke (2013) mentioned that “conventional displays are intended to emit light isotropically. In contrast, a light field display supports the control of tightly-clustered bundles of light rays, modulating radiance as a function of position and direction across its surface.”<ref name=”2”>Lanman, D. and Luebke, D. (2013). Near-Eye Light Field Displays. ACM Transactions on Graphics, 32(6)</ref><ref name=”3”></ref><ref name=”4”> Fattal, D. (2016). The ultimate guide to 3D technologies. Retrieved from https://thenextweb.com/insider/2016/04/23/guide-to-3d-tech/#</ref>
 
  −
Sharp images from out-of-focus display elements are depicted by synthesizing these light fields that correspond to virtual scenes located within the viewer’s natural accommodation range. Lanman and Luebke (2013) mentioned that “conventional displays are intended to emit light isotropically. In contrast, a light field display supports the control of tightly-clustered bundles of light rays, modulating radiance as a function of position and direction across its surface.”<ref name=”2”>Lanman, D. and Luebke, D. (2013). Near-Eye Light Field Displays. ACM Transactions on Graphics, 32(6)</ref><ref name=”3”></ref><ref name=”4”></ref>
      
Traditional HMDs only provide a single display plane; without a proper focus cue, the display decouples accommodations from the vergence of the eyes. Since there is a mismatch, the observer has to rely only on the binocular vision to perceive a 3D space. This can lead to visual discomfort, fatique, eye strain, and headaches <ref name=”6”> Stanford Computational Imaging Lab (2015). The Light Field Stereoscope - SIGGGRAPH 2015 [Video]. Retrieved from https://www.youtube.com/watch?v=YJdMPUF8cDM</ref>.
 
Traditional HMDs only provide a single display plane; without a proper focus cue, the display decouples accommodations from the vergence of the eyes. Since there is a mismatch, the observer has to rely only on the binocular vision to perceive a 3D space. This can lead to visual discomfort, fatique, eye strain, and headaches <ref name=”6”> Stanford Computational Imaging Lab (2015). The Light Field Stereoscope - SIGGGRAPH 2015 [Video]. Retrieved from https://www.youtube.com/watch?v=YJdMPUF8cDM</ref>.
Line 31: Line 29:  
[[File:Nvidia-light-field-stereoscope-schematic.jpg|thumb|Figure 5. Light Field Stereoscope schematic (Image: fudzilla.com)]]
 
[[File:Nvidia-light-field-stereoscope-schematic.jpg|thumb|Figure 5. Light Field Stereoscope schematic (Image: fudzilla.com)]]
   −
During the 2013 [[SIGGRAPH]] (Special Interest Group on Computer Graphics and Interactive Techniques) conference, NVIDIA showed the product of its research sector: a near-eye light field display prototype (Figure 2). It consisted of a pair of Sony [[ECX332A]] OLED micro-displays with a pixel density of about 2100 ppi. The display panels measured 15.36 x 8.64 mm, with a resolution of 1280 x 720 through 24-bit color pixels, and were installed on a glasses-like frame with a small box of electronics on top <ref name=”5”></ref><ref name=”9”> Steele, B. (2013). NVIDIA Research's near-eye light field display prototype eyes-on (video). Retrieved from https://www.engadget.com/2013/07/24/nvidia-research-near-eye-light-field-display-prototype/</ref>.
+
During the 2013 [[SIGGRAPH]] (Special Interest Group on Computer Graphics and Interactive Techniques) conference, NVIDIA showed the product of its research sector: a near-eye light field display prototype (Figure 2). This was Doug Lanman's binocular light field display prototype. It consisted of a pair of Sony [[ECX332A]] OLED micro-displays with a pixel density of about 2100 ppi. The display panels measured 15.36 x 8.64 mm, with a resolution of 1280 x 720 through 24-bit color pixels, and were installed on a glasses-like frame with a small box of electronics on top.<ref name=”5”> LightField Forum. Refocus your Eyes: Nvidia presents Near-Eye Light Field Display Prototype. Retrieved from http://lightfield-forum.com/2013/07/refocus-your-eyes-nvidia-presents-near-eye-light-field-display-prototype/</ref><ref name=”9”> Steele, B. (2013). NVIDIA Research's near-eye light field display prototype eyes-on (video). Retrieved from https://www.engadget.com/2013/07/24/nvidia-research-near-eye-light-field-display-prototype/</ref>
    
The microlens arrays mounted in front of the displays are used to convert pixels to individual light rays, generating a light field in front of the eye. It allows the viewer to focus at multiple depths and create a field of view of approximately 70 degrees. Users who experimented the prototype during the conference confirmed both aspects. Furthermore, they reported that despite being situated close to the eye, the prototype still provided some sharp images. Nevertheless, the proximity caused some pixel loss due to a decreased spacial resolution. Another interesting aspect of this prototype is that adjustments can be made, at the level of software, to take into account the user’s glasses or contacts prescription. The software is powered by NVIDIA GPUs and OpenGL <ref name=”5”></ref><ref name=”9”></ref>.
 
The microlens arrays mounted in front of the displays are used to convert pixels to individual light rays, generating a light field in front of the eye. It allows the viewer to focus at multiple depths and create a field of view of approximately 70 degrees. Users who experimented the prototype during the conference confirmed both aspects. Furthermore, they reported that despite being situated close to the eye, the prototype still provided some sharp images. Nevertheless, the proximity caused some pixel loss due to a decreased spacial resolution. Another interesting aspect of this prototype is that adjustments can be made, at the level of software, to take into account the user’s glasses or contacts prescription. The software is powered by NVIDIA GPUs and OpenGL <ref name=”5”></ref><ref name=”9”></ref>.

Navigation menu