Changes

Jump to navigation Jump to search
14 bytes removed ,  06:27, 23 August 2024
no edit summary
Line 10: Line 10:  
Feature-based methods look for similar features in an imagined or ideal object and a real image. When we consider, for example, a face recognition, it is possible to program a set of features that are associated with the human face. Using these features, a software algorithm can generate a model that will be placed over the captured image. If some features of this object match the image we have a positive match. Common feature-based detection methods include interpretation trees, hypothesize and test method, pose consistency, pose clustering, invariance, geometric hashing, scale-invariant feature transform method, and speeded up robust features (SURF).
 
Feature-based methods look for similar features in an imagined or ideal object and a real image. When we consider, for example, a face recognition, it is possible to program a set of features that are associated with the human face. Using these features, a software algorithm can generate a model that will be placed over the captured image. If some features of this object match the image we have a positive match. Common feature-based detection methods include interpretation trees, hypothesize and test method, pose consistency, pose clustering, invariance, geometric hashing, scale-invariant feature transform method, and speeded up robust features (SURF).
   −
==Augmented Reality==
+
==References==
==Virtual Reality==
+
{{Reflist}}
 +
 
 
[[Category:Terms]]
 
[[Category:Terms]]

Navigation menu