Changes

Jump to navigation Jump to search
9 bytes added ,  15:47, 27 July 2024
m
Text replacement - "in +20" to "in the year +20"
Line 22: Line 22:  
==Model-based approach for markerless tracking==
 
==Model-based approach for markerless tracking==
   −
One of the first model-based systems was presented by Comport and colleagues, in +2003, and sparked the interest of other researchers. With a model-based tracking, models of the objects or environments to be tracked are used as references for the tracking system. The models from this kind of systems are rendered from different point of views, and there are two basic approaches that use the model images for tracking. <ref name=”1”></ref>
+
One of the first model-based systems was presented by Comport and colleagues, in the year +2003, and sparked the interest of other researchers. With a model-based tracking, models of the objects or environments to be tracked are used as references for the tracking system. The models from this kind of systems are rendered from different point of views, and there are two basic approaches that use the model images for tracking. <ref name=”1”></ref>
    
Ziegler (2010) explains that one of the approaches “Extracts features from the model images and video-frames. It then com- pares the features found in a model image with the ones found in a frame. The comparison yields pairs of features which most likely show the same point in the world. These pairs are referred to as correspondences. The tracking system uses the correspondences to estimate the camera’s position and orientation (pose).” A measure of similarity, such as the amount of correspondences, is used to evaluate if the results need refinement by rendering the scene from other point of views. The system will continue refining the results until these meet the threshold defined by the similarity measure. <ref name=”1”></ref>
 
Ziegler (2010) explains that one of the approaches “Extracts features from the model images and video-frames. It then com- pares the features found in a model image with the ones found in a frame. The comparison yields pairs of features which most likely show the same point in the world. These pairs are referred to as correspondences. The tracking system uses the correspondences to estimate the camera’s position and orientation (pose).” A measure of similarity, such as the amount of correspondences, is used to evaluate if the results need refinement by rendering the scene from other point of views. The system will continue refining the results until these meet the threshold defined by the similarity measure. <ref name=”1”></ref>

Navigation menu